

SCO

HOLDINGS

CO₂ Capture in Power and Industrial Sectors

Hydrogen Hy

VARIOSE VALUES

Dec. 1, 2023

Kunwoo Han, *Ph.D* OSCO <u>N.EX.T Hub</u>

Opened in Jannuary 2021

to lead a low-carbon society through carbon neutrality

Outline

Carbon Neutrality and CCUS

CO₂ Capture: Principles and Practices

CO₂ Capture: Future Directions

Summary

Importance of CCUS

Key milestones in the pathway to net zero

 $\sqrt{\text{CCUS}}$: Necessary option for "Carbon Neutrality"

Table 2.9 > Key global milestones for CCUS

	2020	2030	2050
Total CO ₂ captured (Mt CO ₂)	40	1 670	7 600
CO2 captured from fossil fuels and processes	39	1 325	5 2 4 5
Power	3	340	860
Industry	3	360	2 620
Merchant hydrogen production	3	455	1 355
Non-biofuels production	30	170	410
CO2 captured from bioenergy	1	255	1 380
Power	0	90	570
Industry	0	15	180
Biofuels production	1	150	625
Direct air capture	0	90	985
Removal	0	70	630

* Reduction measures in 2050: Behaviro and avoided demand 16%, Electrification 27%, Solar and Wind 12%, Hydrogen 11%, ..., CCUS 18%

What is CCUS?

• Carbon dioxide Capture, Utilization and Storage

<ETP 2020: Special Report on CCUS, IEA(2020)>

(Capture) Separation of CO₂

(Transport) Transporation via pipeline or shipping

(Storage) Permament storage of CO₂

(Utilization) Use of CO₂ via conversion/non-conversion

CO₂ Capture: A brief history

• Selective separation of CO₂ from flue/exhaust gas

Figure 2 - Development of carbon captures technologies (Global CCS Institute 2016).

<https://www.pall.com/en/oil-gas/midstream/lng-acid-gas.html>

Classification of CO₂ Capture and Its Application

Figure 1: Global carbon capture capacity by source, 2021 and 2030

Source: BloombergNEF.

https://about.bnef.com/blog/global-carbon-capture-capacity-due-to-rise-sixfold-by-2030/

Carbon Neutrality Scenarios and Industrial Effort

< 2050 단소중립 시나리오 죄꽁(안) 종괄표	>	
----------------------------	---	--

(단위 : 백만톤CO;eq)

				21		지중순		
구분	부문	78년	1안	2안	3안	A안	Bộ	비고
	배출량	686.3	25.4	18.7	0	0	0	
	전환	269.6	46.2	31.2	0	0	20.7	· (A인) 최력발전 전면증단 · (8인) 화력발전 중 LNG 일부 진존 기정
	산업	260.5	53.1	53.1	53.1	51.1	51.1	
	건물	52.1	7.1	7.1	6.2	6.2	6.2	
배운	수송	981	11.2 (-9.4)	11.2 (-9,4)	2.8	2.8	9.2	 (A안) 도로부문 전기수소자 등으로 전면 전환 (8안) 도로부문 내양기관자의 대체연료(what 음 사용 기정
	농축수산	24.7	17.1	15.4	15.4	15,4	15.4	
	페기울	17.1	4.4	4.4	4.4	4.4	4.4	
	수소	÷	13.6	13.6	0	0	9	·(A안) 국왕원수소전형수전해 수소(그린 수소)로 공급 ·(8만) 국내생산수소 일부 부생주출 수소로 공급
	달루	5.6	1.2	1,2	0.7	0.5	1.3	
	흡수원	-41.3	-24.1	-24,1	-24.7	-25.3	-25.3	
흡수 및 제거	0		-95	-85	-57.9	-55.1	-84.6	
	직접당/ IE집 (DAQ)	×	۲	÷	÷		-7.4	·포집 탄소는 차량용 대체 연료로 활용 가정

• 시나리오 간 내용이 상이한 부문은 파란색으로 표시

< 2050 탄소중립시나리오 (2021)>

부	후 문 감축목표(백만톤)		대표 감축기술		
전 (어	전 환 (´18)269.6 → (에너지) (´50)20.7(△92.3%)		· 재생에너지 효율화 관련 차세대 기술 · 수소터빈 등 신규 발전원 상용화 기술 · 재생에너지 중심 전력체계 안정성 확보 기술		
	全 입 (´5	[종 : (′18)260.5 → i0)51.1(△80.4%)	· 저탄소 산업구조로 대전환 - 탈탄소 공정 · 핵심 감축기술 실증화 및 상용화		
		철강	· 탄소계공정, 수소환원제철로 100% 대체 · 철스크랩 전기로 조강 확대 기술		
산업	산업 석유화학(정유) 시멘트 기타(반도체·디스플레이 등)		· 연료(전기 가열로) 및 원료(바이오 납사) 전환기술 고도화		
			· 100% 친환경 연료 전환 기술 · 석회석 대체 및 혼합재 원료 확대 고도화		
			· 불소계 온실가스 저감 기술 · 전력 다소비업종 에너지 효율화 기술		
ŕ	수 송 (´18)98.1 → (´50)9.2(△90.6%)		· 친환경 교통 전환 및 도로부문 전기·수소화 · 대체연료(e-fuel) 기술 상용화		
C	CCUS (´18) 0 → (´50)-84.6		· 이산화탄소 포집, 활용, 저장 상용화 기술		

* 자원순환도 핵심 감축기술로 제시

< 탄소중립 산업·에너지 R&D 전략, 산업부 (2021)>

CO₂ Capture in Industrial Sector

CO ₂ source	CO ₂ content	CO ₂ process unit	Temperature (°C)	Flue gas component	% of U.S. emissions
Petroleum power plant	3-8%	Furnace	40 - 65	CO2, NOX, SOX, O2, N2	0.5
Natural gas power plant	3–5%	Gasturbine	93-106 (after HRSG)	CO ₂ , NOx, SOx, CO, O ₂ , N ₂ , Hg, As, Se	8,0
Coal power plant	10-15%	Steam boiler furnace	40 - 65	CO ₂ , NOx, SOx, CO, O ₂ , N ₂ , Hg, As, Se	28.3
cement production	30%	Precalciner	150 - 350	CO ₂ , H ₂ O, N ₂ , hydrocarbons, volatiles (K ₂ O, Na ₂ O, S, Cl)	1.2
	14-33%	High T Kiln (calcination)	150 - 350	CO ₂ , H ₂ O, N ₂ , hydrocarbons, volatiles (K ₂ O, Na ₂ O, S, CI)	
Rendeum teinenes	8-10%	Process heaters	160-190	Depends on fuel used	3.1
	3 - 5%	Utilities (steam, electricity)	160-190	Depends on fuel used	
	10-20%	Fluid catalytic cracker (RCC) (regeneration of catalyst)	160-190	O ₂ , CO ₂ , H ₂ O, N ₂ , Ar, CO, NOx,SOx	
	30 - 45%, 98-100%	H ₂ purification	20-40 (for PSA), 100-120 (for chemisorption)	CO ₂ , H ₂ , CO, CH ₄	
Iron and steel manufacturing	20-27%	Blast furnace (high CO ₂ if BFG is burned)	100	H ₂ , N ₂ , CO, CO ₂ , H ₂ S	1.0
	16 - 42%	Basic oxygen Furnace (high CO ₂ from burning BOF gas)	~100	H ₂ , N ₂ , CO, CO ₂ , H ₂ S	
Ethylene production	7–12%	Steam cracking	160-215	H ₂ O, CO, NOx, SOx, O ₂ , N ₂ , CO ₂	0,3
Ethylene oxide production	~30%, 98-100%	Absorption unit to purify EO (lower end is air oxida- tion, higher end is oxygen oxidation)	16-32 (for water adsorp- tion), 100-120 (chemisorption)	Mainly CO ₂ , H ₂ O, N ₂ , (air oxidation) some CH ₄ , eth- ylene, EO	0.02
Ammonia processing	98-100%	H ₂ purification	100-120 (chemisorption)	CO2, H2, O2, CH4	0.3
Natural gas processing	96-99%	Acid gas removal/CO ₂ absorption (low P stripper)	100-120	96 - 99% CO ₂ , 1-4% CHx (mainly me thane, trace amounts ethane, propane, butane), H ₂ O, N ₂	0.3
Hydrogen production	30 - 45%, 98-100% (15-20% in stream before purification)	H ₂ purification (lower end is PSA, higher end for CO ₂ specific separation)	20-40(for PSA), 100-120 (for chemisorption)	CO ₂ , H ₂ , CO, CH ₄ , After chemisorption; ~100% CO ₂	0.8
Ethanol production	98 – 99%	Fermentation	35	CO ₂ , ethanol, methanol, H ₂ S, dimethyl sulphide, acetal- dehyde, ethyl acetate	0.7

<Bains et al., PECS(2017)>

CO₂ Capture in Cement Industry

$$CaCO_3 + heat \rightarrow CaO + CO_2$$

<*Bains et al.*, *PECS(2017)*>

 \checkmark Globally, CO₂ emission in cement industry ~ 64.3Mt in 2014

- \checkmark Main source of CO₂ ~ cement kiln (heating + calcination)
- \checkmark Higher CO₂ conc. than flue gas, however, ... little profit

CO₂ Capture in Refinery Industry

Table 4

Breakdown of 2014 CO2 emissions from ExxonMobil's petroleum refinery in Baytown, TX [38].

CO ₂ source	CO2 emissions (metric tons)	% of facility emissions
Process heaters	8359,658	80.30%
Fluid catalytic cracking	1849,208	17.80%
Sulfur recovery	140,722	1,40%
Flares	52,751	0.51%
Catalytic reforming	2046	0.02%
Process vents	1693	0.02%
TOTAL	10,406,077	100%

<Bains et al., PECS(2017)>

Heating $CH_4 + O_2 \rightarrow CO_2 + 2H_2O$ $C_2H_6 + O_2 \rightarrow 2CO_2 + H_2O$ Decoking $C(deposit) + O_2 \rightarrow ... \rightarrow CO_2$

 \checkmark Globally, CO₂ emission in refinery industry ~ 818Mt in 2008

- \checkmark Main source of CO₂ emission ~ combustion(fluid catalytic cracking, process heaters)
- \checkmark Lots of refineries have on-site hydrogen production units

CO₂ Capture in Iron and Steel Industry

Key reaction in "Iron and Steelmaking"

 Fe_2O_3 , Fe_3O_4 + Carbon \rightarrow Fe + CO_2

 CO_2 capture and Storage Regional Awareness-Raising Workshop, 2012 >

 \checkmark Major CO₂ emission : iron-making(Coking/Sintering/BF)

 \checkmark CO₂ capture ~ practices in BFG

CO₂ Capture in Hydrogen Production

	•		
	-	n	
	-	u	 - 4

Estimated 2008 CO₂ emissions from hydrogen production [30]. Production type from [77].

Hydrogen production type	Business sector	Estimated CO ₂ emissions (MMT per year)	CO ₂ breakdown
On-purpose merchant	Merchant H2	17	28.3%
On-purpose captive	Oil refineries	25	41.7%
On-purpose captive	Ammonia plants	18	30.0%
On-purpose captive	Methanol plants	None	0.0%
Byproduct	Chlorine plants	None	0.0%
4830	Other	<1	< 1%
24 	TOTAL	60	100%

<Bains et al., PECS(2017)>

- ✓ Majority production : on-purpose captive
- \checkmark CO₂ capture ~ absorption/adsorption after shift reactor

CO₂ Capture in Ethylene Oxide Production

Raw material Process Main product Byproducts

https://www.google.com/url?sa=i&url=https%3A%2F%2F www.chemengonline.com%2Fethylene-oxide-productionethylene%2F&psig=AOvVaw1zpVNQgAV8eAZnv_YklEmT &ust=1700899710128000&source=images&cd=vfe&opi= 89978449&ved=0CBEQjhxqFwoTCJDmnKyX3IIDFQAAA AAdAAAABAI

Ethylene oxide production

\checkmark CO₂ emissions in EO or EG production

 \checkmark Two types of oxidation: direct oxygen or air

tion

Confidential

[CO₂ Capture in EO production, Oxygen-oxidation]

14

CO₂ Capture Development Status

$\sqrt{10}$ Chemical absorption ~ widely studied and commercialized

$\sqrt{\mbox{Commercialized}}$ in various fields

DOS

Directions for CO₂ Capture

Low

High

Low

<Catalysts(2020)>

posed

√ No Silver Bullet!

High

Low

Directions for CO₂ Capture

* Thermodynamics tells...

"A 90% CO2 capture rate at 95% CO2 purity was assumed for all CO2-relevant gas streams, except for those with initial(feed) stream purities greater than 95%. In this case, CO2 purity that matched the initial feed stream's purity were assumed, resulting in zero theoretical minimum work required for separation."

<CO2 Capture, Wilcox(2014)>

Summary

- CCUS ~ pillar for "Carbon Neutrality"
- Capturing CO₂ ~ long history with lots of practices around the globe
 - Absorption(Wet/Dry), Adsorption, Membranes, Cryogenics, etc.
 - Natural gas processing, Hydrogen production, EO production, …
 - Moving toward Power and Other Industrial Sectors
- Industrial CO₂ Capture
 - (Refinery) FCC, Process Heaters
 - (Cement) Kiln exhaust gas with relatively high concentration
 - (Iron and Steel) Iron-making process with wide range of CO₂ conc.
 - (Hydrogen Production) Various possible points of capture, relatively high CO₂ conc.
- Different CO_2 emission conditions \rightarrow Different methods for capture
- Research direction: Reducing the energy(thermal) consumption

posco <u> MEDRACO</u>

러스 미래기술여구워 분위